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Abstract

This report aims to answer the question of whether feature selection methods will improve
the predictive performance and computation time of a range of well-known machine learning
models. We conduct a large scale experiment through OpenML on a subset of the OpenML-
CC18 dataset, a well-curated classification dataset. We find that feature selection can greatly
decrease training and prediction time, but does little in terms of predictive performance gain.
In fact, it may instead hurt performance slightly.

1 Introduction

An important part of the machine learning pipeline is preprocessing the data. Many papers claim
an important preprocessing step is feature selection [1, 2, 3]. Feature selection, or dimensionality
reduction, is selecting a subset of the available features according to some selection criterion. Feature
selection can in theory have many benefits. Examples of this are improving the interpretability,
reducing training time due to the lower amount of features, and even improving test accuracy due
to a lower risk of overfitting.
The goal of this paper is to answer the question of whether feature selection makes a difference in
both the training time and predictive performance. Similar work has been produced by Martijn J.
Post et al. [4], but it lacked investigation in training time and also did not optimize hyperparameters.
Our experiments are conducted on the OpenML-CC18 [5], a set of 72 curated classification datasets
published through OpenML [6, 7]. We will use a variety of 5 different well-known and popular
classification algorithms. Hyperparameter optimization is done by means of Bayesian optimization,
as it is currently considered the best approach for finding good hyperparameters in a relatively
short amount of time. The final code can be found on our GitHub1.
Our report is structured as follows. In Section 3 we describe our choice of algorithms and methods.
We also explain our experimental setup. In Section 4 we show our experimental results. And finally
in Section 5 we draw conclusions.
In addition it is worth mentioning that we had limited time and computation resources this is why
we needed to make some sacrifices to get as much results as posible for the limits we had.

1https://github.com/ernestvmo/feature_selection
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2 Related Works

As explained in the introduction of this paper, feature selection has many benefits; increasing
readability, reducing training time, and even improved accuracy and lowering the risk of overfitting.
The problem of feature selection can be looked at in the form of a search problem, with a search
space and an objective. Performing an exhaustive search on all of the features combination is
naturally impractical, especially when we consider large datasets, hence different methods have to
be considered.
Chandrashekar and Sahin [8] proposed different feature selection methods tested on two supervised
learning algorithms Support Vector Machine (SVM) and Radial Basis Function Network (RBF))
using seven different datasets.
Martijn J. Post et al. [4] looked at the benefit of using feature-selection on a variety of algorithms.
Their research is made available on OpenML. Their research stands as baseline for this paper, and
we decided to extend their research by investigating the training time performance, and applying
Bayesian optimization on the models’ hyperparameters before applying feature selection.

3 Methods

For our experiments, we have chosen 5 different commonly used classification algorithms. We
picked these algorithms firstly because they represent different alogorithm families like boosting,
tree-based, linear, metrics-based, probabilistic and even simple neural network. Secondly, some
of them are state-of-the-art methods and some are more simple but have their own benefits (like
speed, interpretability and also require much less training data), nevertheless, all of them are widely
used in production systems and in addition they are implemented in Scikit-learn [9], which is a
widely used machine learning toolkit which in turn allows for good reproducibility of our results.
Scikit-learn is open source, gives a wide variety of models, has C++ backend and is well optimized
which gives good performance and is well involved in the python data science ecosystem working
out of the box with numpy, pandas, scipy and data visualisation instruments. The algorithms used
and their corresponding hyperparameter search spaces are listed in Table 1.
We have chosen these algorithms due to them being well known and used. Furthermore, we wanted
to explore a wide range of different methods, namely linear models, boosting methods, a neighbour
method, a decision tree and an ensemble method.

We use Bayesian optimization for optimizing the hyperparameters of each algorithm. The Bayesian
optimization internally uses 3-fold cross-validation and 50 iterations. 3-fold cross-validation is not
the standard here, but allowed for good enough results and saved us quite a bit of time, which in
turn allowed us to get more results. To compare the final results after optimization, we have used
10-fold cross-validation as it is a robust way to measure the performance of a model.

We considered different types of feature selection algorithms. The first considered type is statistical
filter-based feature selection, it is simple but needs to tune some hyperparameters like actual test
and threshold, different recommendations can be observed on Figure 1, the main disadvantage of
this method is that it can not see any relations between variables which is often important. Next
type of feature selection is recursive feature elimination the estimator is trained on the initial set of
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Figure 1: Statistical feature selection

features and the importance of each feature is obtained through the models feature importance
attribute from Scikit-learn. After that, the least important features are pruned from the current set
of features. That procedure is recursively repeated on the pruned set until the desired number of
features to select is eventually reached. Such a method obviously requires a lot of time and moreover
is a greedy method which means it can stuck in local optimums or overfit. The last considered
feature selection type is embedded methods and are based of feature importance after passing
through a machine learning model usually either linear or random forest on gradient boosting
model, this is relatively fast, allows to take into the account dependencies between features and
can work on any dataset.

Based on the considerations above as our feature selection method, we have opted to use an
ensemble method to calculate impurity-based feature importance, which can then be used to select
relevant features. Moreover, this model is implemented in Scikit-learn. Which has the benefits we
described earlier. Furthermore, we have only chosen a single method as it was found that different
feature selection methods only lead to marginally different results [4].

Our experiments are conducted by testing each algorithm on each dataset twice, once with feature
selection and once without feature selection. Before both runs, the hyperparameters are optimized
with Bayesian optimization which is only trained on a random subset of an arbitrarily chosen 72%
of the total data, such split allows us to assure that our model has not overfitted and generalized
dataset features correctly. The final score is then evaluated by means of 10-fold cross-validation for
both of the runs. During the cross-validation, we measure the accuracy, precision, recall, f1 and
Area under the ROC curve. Because we have 10 measurements, due to the 10 folds, we can do
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statistical analysis to test whether our results are statistically significant. Furthermore, we measure
the time it took both runs to complete in seconds.

Table 1: Used Algorithms and the hyperparameter spaces used for the hyperparameter optimization
process.

Algorithm Hyperparameter space

Decision Tree criterion: [gini, entropy], max depth: [1, 1000, uniform],
min samples split: [1, 100, uniform], min samples leaf: [1, 100,
uniform], max features: [auto, log2]

GradientBoosting learning rate: [1e-2, 1e2], n estimators: [1, 500], subsample: [0.1,
1], criterion: [friedman mse, squared error], min samples split:
[0.01, 1], min samples leaf: [0.001, 0.5, uniform], max depth: [1,
100], tol: [1e-4, 1e-2, log-uniform]

K-nearest neighbor (kNN) n neighbors: [1, 20, uniform], weights: [uniform, distance], algo-
rithm: [auto, ball tree, kd tree, brute], p: [1, 3, uniform]

Logistic Regression penalty: [elasticnet, l1, l2], C: [1e-4, 10000, log-uniform], solver:
[newton-cg, liblinear], tol: [1e-5, 1e-3, uniform]

Random Forest n estimators: [50, 500, uniform], criterion: [gini, entropy],
max features: [auto, log2], max depth: [1, 1000, uniform],
min samples split: [1, 100, uniform], min samples leaf: [1, 100,
uniform]

4 Experiments

For experiments below, we ran as many datasets as possible on each of the algorithms. We measured
the training time, testing time and f1 scores during 10-fold cross-validation both before and after
feature selection. The time taken for the feature selection itself, is taken into account in the training
time of the feature selection method. For the statistical tests, we use the Wilcoxon statistical test
as it was successfully used in similar work [10]. The statistical test is applied to each of the 10 folds
of the cross-validation from before and after the feature selection.
The remaining parts of this Section is outlined as follows. First, we will briefly describe the
performance difference between no feature selection and feature selection applied for each of the 5
algorithms. Then we will summarise these results for the predictive performance and time difference
in terms.

4.0.1 Gradient Boosting

Looking at figure 2, we can view the performance of the GradientBoosting based on the F1 score
and total time. When it comes to F1 performance (figure 2a and table 2), it is unclear if using
feature selection really improves the results. Using feature selection had a noticeable impact on the
time performance for GradientBoosting. Excluding two datasets, scores with feature selection are
all better (figure 2b and table 2). Overall, using feature selection along with GradientBoosting lead
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to a F1 performance 3.30% poorer than without feature selection, but it lead to an improvement
of 55% in total time.
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Figure 2: Whether GradientBoosting performs better on various datasets with or without feature
selection or whether there is no statistical difference found.

Table 2: GradientBoosting performance on all datasets. The cells in the first two rows indicate
how many datasets performed better or worse with feature selection, and in how many datasets
a statistical difference was found. The last columns indicate the average improvement by feature
selection in both performance and time.

Absolute Statistical difference
Better Worse Yes No

Performance 21 38 38 21
Time 48 11 57 2

Avg f1 improvement -3.308%
Avg Time improvement 55.000%

4.0.2 Decision Tree

The results for decision tree a bit stands out from other models results. It was assumed that
such behaviour was related to feature selection algorithm since it is also tree-based and selects
features that can be interpreted as good by other tree-based models. All results for the decision
tree experiments can be found in Figure 3 and Table 3.

4.0.3 Logistic Regression

Looking into the overall performance of the Logistic Regressor (figures 4, 4a, 4b, and table 4),
we can clearly see the impact of using feature selection. A majority of datasets performed worse
after feature selection, but a similar ratio can be seen in the total time performance. Overall, using
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Figure 3: Whether Decision Tree performs better on various datasets with or without feature
selection or whether there is no statistical difference found.

Table 3: Decision tree performance on all datasets. The cells in the first two rows indicate how many
datasets performed better or worse with feature selection, and in how many datasets a statistical
difference was found. The last columns indicate the average improvement by feature selection in
both performance and time.

Absolute Statistical difference
Better Worse Yes No

Performance 30 15 16 29
Time 18 27 36 9

Avg f1 improvement 1.425%
Avg Time improvement -12.934%

feature selection along with Logistic Regression lead to an F1 performance 2.946% poorer than
without feature selection, but it leads to an improvement of 56.772% in total time.

Table 4: Logistic regression performance on all datasets. The cells in the first two rows indicate
how many datasets performed better or worse with feature selection, and in how many datasets
a statistical difference was found. The last columns indicate the average improvement by feature
selection in both performance and time.

Absolute Statistical difference
Better Worse Yes No

Performance 8 36 25 19
Time 34 10 35 9

Avg f1 improvement -2.946%
Avg Time improvement 56.772%
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Figure 4: Whether Logistic regression performs better on various datasets with or without feature
selection or whether there is no statistical difference found.

4.0.4 K-Nearest Neighbour

Results for the KNN experiments are found in Figure 5 and Table 5. kNN algorithm also benefits
a lot from feature selection since reducing the amount of features helps to fight with ”curse of
dimensionality” which in theory should have improved the performance, but in fact it only improved
the performance by 63% because fewer calculation are required to calculate metrics value in less
dimensional space.

101 102 103

number of datapoints

103

104

nu
m

be
r o

f f
ea

tu
re

s

KNN performance
feature selection better
no statistical difference
no feature selection better

(a) F1 performance

101 102 103

number of datapoints

103

104

nu
m

be
r o

f f
ea

tu
re

s

KNN time
feature selection better
no statistical difference
no feature selection better

(b) Training & Evaluation time

Figure 5: Whether k-nearest neighbour performs better on various datasets with or without feature
selection or whether there is no statistical difference found.

7



Table 5: K-Nearest Neighbour performance on all datasets. The cells in the first two rows indicate
how many datasets performed better or worse with feature selection, and in how many datasets
a statistical difference was found. The last columns indicate the average improvement by feature
selection in both performance and time.

Absolute Statistical difference
Better Worse Yes No

Performance 13 32 23 22
Time 32 13 40 5

Avg f1 improvement -1.363%
Avg Time improvement 63.094%

4.0.5 Random Forest

The results for the Random Forest experiments can be found in Figure 6 and Table 6. Feature
selection will more often than not hurt performance for Random Forest in terms of predictions.
While the average f1 difference is rather small, it is about half of the time statistically significant.
Feature selection will however, often benefit a Random Forest in terms of time to train and predict.
In 40 out of 45 cases, there was an improvement in time and often there was found to be a
statistically significant increase in training time.
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Figure 6: Whether Random Forest performs better on various datasets with or without feature
selection or whether there is no statistical difference found.

4.1 Execution time & Performance

Execution time for most algorithms went down, except for the decision tree. This is somewhat
expected as the data is simplified and algorithms have to spend less time on useless features. What
is surprising is the amount of time feature selection can save, as we found percentages of over 50%
for most algorithms.
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Table 6: Random Forest performance on all datasets. The cells in the first two rows indicate how
many datasets performed better or worse with feature selection, and in how many datasets a
statistical difference was found. The last columns indicate the average improvement by feature
selection in both performance and time.

Absolute Statistical difference
Better Worse Yes No

Performance 12 33 24 21
Time 40 5 35 10

Avg f1 improvement -1.833%
Avg Time improvement 60.795%

When investigating the performance of feature selection on different models visible in figure 7, we
can see that using feature selection does not greatly impact the performance of any algorithm. For
most algorithms, the F1 score of the algorithm before feature selection is slightly greater than
that with feature selection applied. This can be explained by models being sophisticated enough
that they will properly use features themselves or less so when they are of less importance. When
feature selection does increase performance, the difference is so small that there is no real benefit of
using feature selection purely for performance. On the other hand, when one wants to get the most
predictive performance out of their model, it is more often found that it is better not to use feature
selection. However, given the sometimes huge performance increase in terms of time required, this
can be a tricky trade-off.
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Figure 7: Absolute F1 of all models based on CV10 averages
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5 Conclusions

Even though feature selection tends to give a significant boost in execution and training time it
often performs worth from a predictive metrics perspective. Unfortunately, due to lack of time
(some datasets took days to be processed!) we can not statistically prove it, but large datasets tend
to gain more advantages from feature selection, this is somewhat expected.
Following our experimentation, we concluded that the key deciding factor into whether one should
use feature selection or not comes down to the size of ones data. If the data in question holds a
lot of features that do not give much value, or if resource efficiency is a crucial factor to solving
ones’ task, then we suggest using feature selection to improve the results, since huge benefits in
training time can be achieved. However, when one wants to maximise predictive performance, it is
likely that feature selection will not be of any benefit to you. Instead, it may even hurt predictive
performance.

6 Discussion & future work

For completeness and reproducibility, we have added all datasets used by the various algorithms to
Table 7 in the Appendix. However, we would recommend using all the OpenML-CC18 datasets in
any future work.
It is worth noticing however, that OpenML-CC18 has already picked and cleaned dataset, as
opposed to the real world where there is more noise and there might be more non-informative
features. Investigation into more noisy datasets could be worthwhile.
Furthermore, we wanted to experiment with more algorithms, as there are more widely-known
types such as Support Vector Machines and neural networks. We were unfortunately unable to do
so in this study, but would recommend these additional algorithms in future work.
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A Appendix

Table 7: OpenML Dataset Id’s used by each of the algorithms. GradientBoosting has processed
more datasets as others while being slower on average because it was instantiated earlier and we
did not want to exclude these results.

model amount OpenML dataset ID’s

GradientBoosting 59 3, 6, 11, 12, 14, 16, 18, 22, 23, 28, 31, 32, 37, 44, 46, 50,
54, 151, 182, 300, 307, 458, 469, 1049, 1050, 1063, 1067,
1068, 1461, 1462, 1464, 1468, 1475, 1478, 1480, 1485, 1486,
1487, 1489, 1494, 1497, 1501, 1510, 4134, 4534, 4538, 23517,
40499, 40668, 40670, 40701, 40975, 40978, 40979, 40982,
40983, 40984, 40994, 41027

KNN, Decision Tree,
Random Forest

45 6, 11, 12, 16, 18, 22, 23, 28, 31, 32, 37, 50, 151, 182, 300, 307,
458, 469, 1049, 1050, 1063, 1067, 1068, 1462, 1468, 1475,
1485, 1486, 1489, 1494, 1497, 1501, 1510, 4134, 4534, 4538,
40499, 40668, 40670, 40701, 40975, 40978, 40979, 40983,
40984

Logistic Regression 44 6, 11, 12, 16, 18, 22, 23, 28, 31, 32, 37, 50, 151, 182, 307, 458,
469, 1049, 1050, 1063, 1067, 1068, 1462, 1468, 1475, 1485,
1486, 1489, 1494, 1497, 1501, 1510, 4134, 4534, 4538, 40499,
40668, 40670, 40701, 40975, 40978, 40979, 40983, 40984
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